


Problem Introduction: Vanilla Form |

@ Let X be a coin that outputs 1 (representing heads) with
probability p, and outputs 0 (representing tails) with
probability 1 — p. The exact probability p is not known. Our
objective is to estimate the probability p.

e Informally, our strategy is to toss this coin (independently) n
times and report the fraction of outcomes that were heads.
We want to understand the probability that this estimate is far
from the actual value of p.

o Let X X@ . X" represent n independent coin tosses
that are identically distributed as the random variable X

@ We are interested in studying the random variable
Snp —x@) + x(2) R x(n)

This random variable S, , represents the total number of
heads in the n coin tosses.
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Problem Introduction: Vanilla Form |l

o Formally, given € > 0, we are interested in computing the
probability that

P [Snp=n(p+e)] <777

That is, we are interested to prove that the probability of our
estimate being “much larger” than p is small.

Concentration Bounds



Approach using Stirling's Approximation |

@ Suppose we have seen i heads. We can explicitly compute the
probability that S, , = i as follows. There are (7) ways to
choose the coins that turn up heads. The probability that
these coins turn up heads is p’. Moreover, the probability that
the remaining coins turn up tails is (1 — p)"~". So, we can
claim the following

P[Spp=i] = <’I’> (1= p)

@ Threfore, from this result, our desired probability is

Pup o) = X (7)o
izn(p+e)

e For simplicity, let us assume that n(p + €) = k is an integer
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Approach using Stirling's Approximation ||

@ Upper-bound. We can prove that among the elements

(’I.')pi(l — p)"~, where i > k, the maximum element is one

where i = k. We can use this observation to upper-bound the
probability expression.

P [Snp = n(p+e)] = Z <> nip'(1 — p)™~'

iZk

<> (:) p (1 —p)" "

=(n—k) <Z> p(1—p) "

< n—k
V2rn(p+e)(1—p—e)

= \/Eexp (*nDKL (p+e, P))
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Approach using Stirling’s Approximation |ll

Basically, this bound proves that

P [Snp = n(p+¢€)] = O(v/n) - exp (—nDkr, (p + €, p))

o Lower-bound. We can prove a lower bound by using the fact
that “the probability of observing > k heads” is more than “the
probability of observing exactly k heads.”

P [Snp=n(p+¢)] >P[Snp = ]

= (:) pi(L—p) "

. 1
V8n(p+e)(1-p—¢)

Basically, this bound proves that

exp (—nDxr. (p + ¢, p))

P [Snp = n(p+¢)] = Q(1/v/n) exp (—nDxkw (p + €, p))
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Approach using Stirling’s Approximation |V

@ Conclusion. The upper and the lower-bounds can be
combined to conclude that P [S,, > n(p +¢)] is

poly(n) - exp(—nDxr, (p + ¢, p))-
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Chernoff Bound: Proof |

@ Let us now upper bound the probability P [Sn,p > n(p+ 8)]
using the Chernoff bound. The upper-bound will be slightly
better than what we obtained using the naive Stirling
approximation presented above.

@ Recall that X is a r.v. over the sample space {0,1}. Moreover,
we have P[X = 1] = pand P[X = 0] =1 — p. Note that we
have E [X] = p.

@ We are studying the r.v.
Sn,p = X(l) + X(Z) 4.4 X(")

Each random variable X() is an independent copy of the
random variable X.

o Note that we have E [S, ,] = nE[X] = np, by the linearity of
expectation
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Chernoff Bound: Proof Il

Theorem (Chernoff Bound)

P [Snp = n(p +¢)] < exp (—nDxr (p + ¢, p))

Before we proceed to proving this result, let us interpret this
theorem statement. Suppose p =1/2 and t = 1/4. Then, it is
exponentially unlikely that S, , surpasses n(1/2 +1/4) = 3n/4

Concentration Bounds



Chernoff Bound: Proof IlI

Let us begin with the proof.
@ We are interested in upper-bounding the probability

P [Snp > n(p+¢)]
o Note that, for any positive h, we have
P [Sn,p P n(P + 5)] =P [eXp(hSnyp) > exp(hn(p + 5))]

The exact value of h will be determined later. The intuition of
using the exp(-) function is to consider all the moments of S, ,

@ Now, we apply Markov inequality to obtain

E [exp(hSn,p)]

E [exp(hSnp) > exp(hn(p+e))] < oo =y
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Chernoff Bound: Proof IV

@ Now, we need an observation. Suppose A and B are two
independent random variables. Then, we have
E [exp(A + B)| = E [exp(A)] - E [exp(B)]. We emphasize
that A and B have to be independent to apply this result.

o Note that we have S,, = > " ; X, So, we can apply the
previous observation iteratively to obtain the following result.

E [exp(hSnp)] [[LE {exp(hX("))] _ ( E [exp(hX)] )n

exp(hn(p+<)  exp(hn(p + <)) exp(h(p + <))

@ Recall that X is a random variable such that P[X =0 =1—-p
and P[X = 1] = p. So, the random variable exp(hX) is such
that P [exp(hX) = 1] =1 — p and PP [exp(hX) = exp(h)]| = p.
Therefore, we can conclude that

E [exp(hX)] = (1 —p) -1+ p-exp(h) =1— p+ pexp(h)
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Chernoff Bound: Proof V

@ Substituting this value, we get

<E[exp(hX)] ) _ (1—p+pexp(h>>"

exp(h(p +¢€)) exp(h(p +¢€))

@ So, let us take a pause at this point and recall what we have
proven thus far. We have shown that, for all positive h, the
following bound holds

P [Syp = n(p+¢)] < <1 e_xri Jr(,f ixg)()h)>
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Chernoff Bound: Proof VI

@ To obtain the tightest upper-bound we should use the value of
h = h* that minimizes the right-hand size expression. For
simplicity let us make a variable substitution H = exp(h). Let
us define

1—p+pH
FH) = = —
Our objective is to find H = H* that minimizes f(H).

o Let us compute f'(H) and solve for f(H*) = 0. Note that we
have

vy P (p+e)1—p+pH)
fi(H) = Hpt+e Hp+e+1

The solution f'(H*) = 0 is given by

H*: I)—i_E .1_p.
1—p—c¢ p
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Chernoff Bound: Proof VII

We can check that, for € > 0, we have H* > 1, that is, h > 0.
We can consider the second derivative f”/(H) to prove that
this extremum is a minima.

Instead of computing f”(H), we can use a shortcut technique.
We know that at H*, the function f(H) either has a maximum
or a minimum. Moreover, there is only one extremum of the
function f(H). Note that limy_, f(H) = oo, so f(H*) must
be a minimum.
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Chernoff Bound: Proof VIII

@ Now, let us substitute the value of h* to obtain

P [Snp = n(p +¢)]

1-p)(p+
((1—p)<p+s>)"+€
p(1—p—e)

e n
((1—p)(p+e))"+5

p(1—p—e¢)

p pte 1—p
pte l—-p—c¢

exp(—nDxr, (p+ ¢, p))
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Overview of Generalization |

Our objective is to generalize the Chernoff Bound that we proved
above. Let us first recall the Chernoff bound result that we proved.

@ Let X be Bern (p)
o LetS,,= XM £ x@ 4. 4 x(0)
@ Chernoff bound states that

P [Spp = n(p+¢)] < exp(—nDkr (p + <, p))
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Overview of Generalization Il

We shall generalize this result in two ways

@ For 1 <i< n, let X; be an independent Bern (p;) random
variable. That is, X; be a r.v. over {0, 1} such that
P[X,’ = O] =1 — Pi and P[X,‘ = ].] = pi. Each X,’ is
independent of the other Xjs. Let S, , = X; + Xo +--- + X,,,
where p = (p1 +--- + pn)/n.
@ For1<i<n,letX;bear.v. over [0,1] such that E[X;] = p;.
Despite these two generalizations, the following bound continues to
hold true.

P [Syp = n(p +¢)] < exp(—nDkL (p + ¢, p))
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First Generalization |

Let X1, X5,...X, be independent random variables such that
X; =Bern(p;), for 1 <i<n

Let p:=(p1+p2+---+pn)/n
Define Spp =X +Xo ++-- + X,

We bound the following probability. For any H > 1, we have
P [Sn,p > n(p + 5)] =P |:HSn,p > Hn(P-‘ra)}
@ Now, we apply the Markov inequality

E [HSM’} E [HZ7:1 XI} E [H,":l fo]

Sh, n(p-+e) — —
P[H P2 H k O T T )

Concentration Bounds



First Generalization |l

@ Since, each X are independent of other X;s, we have

X,’ Xi
E |:Hln:1H :| . HI{,:].E |:H } . H;’:ll—p;—l-p,'H

Hnlp+e) —  Hn(p+e) Hn(p+e)

@ We apply the AM-GM inequality to conclude that

n Zn 1 _ + H n
[I1-pi+piH< ( S e )
i=1

n

Equality holds if and only if all p; = p. This bound can now be
substituted to conclude

E [H7:1 HX‘} . <1—p+pH)"

Hn(p—i—a) Hp+e
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First Generalization Ill

@ This is identical to the bound that we had in the Chernoff
bound proof. We can use the following choice of H in the
bound above to obtain the tightest possible bound

« (p+e)(1-p)
= p(l—p—ce)

So, we get the bound

P [Spp = n(p+¢)] < exp(—nDkr (p + <, p))

Concentration Bounds



Second Generalization |

o Let 1 <X; < 1bearv. such that E[X;] = p; and each X is
independent of other Xs

@ Just like the previous setting, we have
Spp = X1 +Xo 4+ + X, where p = (p1 + p2 +---+ pn)/n
@ Note that if we prove the following bound, then we shall be

done
E [HX’] <1l-pi+pH

We can use this bound in the previous proof and arrive at the
identical upper-bound.

Concentration Bounds



Second Generalization Il

The proof follows from the following

E [HX/'] = 3 PXi=x H
x€[0,1]
Z P [Xl _ X] . H(lfx)»0+x»1
x€[0,1]
Z PIX;=x]- ((1 —x)-H® +x- Hl) , (By Jensen’s)
x€[0,1]
> P =x]- (1 - x+ xH)
x€[0,1]
=Y PXi=x]- Y PXi=x]'x+H Y PXi=x] x
x€[0,1] x€[0,1] x€[0,1]
=1-—pi+ piH, (Because E[Xi] = pi)

N

The appendix provides additional intuition for this analysis.
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Conclusion

o Let 1 < X; <1 are independent random variables, for
1<i<n Let p=E[X]], for 1 < i< n. Define
Sn,p =X1 +Xo +- -+ X, where p = (Pl + Pn)/”-

Theorem (Chernoff Bound)

P [Snp = n(p+¢)] < exp(—nDkL (p + €, p))

@ Objective of the next lecture. We shall obtain easier to
compute, albeit weaker, upper bounds on this probability.
These bounds shall rely on the following inequalities

Q Dki(p+e,p) = 2¢2,

Q@ Dxw (p(1+¢),p) = 2(1T€/3), and

@ Dk, (1 —p(l—¢),1- p) > pe?)/2.
Check them out at:
https://www.desmos.com/calculator/pyessio3v2
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Appendix: Intuition for the Analysis |

o Let X be an r.v. over [a, b] such that E [X] =

o Let f: R — R be a concave upwards function (that is, it looks
like f(x) = x?)

e Jensen's inequality states that f(E[X]) < E [f(X)], and
equality holds if and only if X has its entire probability mass at
pt. Therefore, we can conclude that f(u) < E [£(X)]

@ So, we have a lower-bound on E [f(X)]. Now, we are
interested in obtaining an upper-bound on E [f(X)]

@ For the upper-bound note that is X deposits more probability
mass away from p, then E [f(X)] increases. In fact, increasing
the mass further away increases E [f(X)] more. So, the
maximum value of E [f(X)] is achieved when X deposits the
entire probability mass either at a or b only. Let us find such a
probability distribution under the constraint that E [X] = u
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Appendix: Intuition for the Analysis I

@ Suppose P[X* = a] = p. Then, we have P[X* = b] =1 — p.
Further, the constraint E [X*] = u becomes
pa+ (1 — p)b = p. Solving, we get

£=2. For this probability, we get

Therefore, we get 1 — p =

E [f(X*)] = %f(a) + Ef(b)

So, we expect the following bound to hold for a general r.v. X

E[f(X)] <E[f(X*)] =

This is not a formal proof. Let us prove this intuition formally.
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Appendix: Intuition for the Analysis Il

o Let X be an r.v. over [a, b] with E [X] = p. Note that by
Jensen’s inequality, we have

b—x X—a b—x X—a
= <
f(x) f<b—aa+b—ab) b_af(a)—i—b_af(b)

Now, we take expectation on both sides to conclude that

E[f(X)] <E [b_}jf(a) + if: :f(b)}
_ b-E[X] E[X]—a
=5, f@+— ——f(b)
_ %f(a) +B=2¢(b)
@ To conclude, we have the following bound.
) <E[F(X)] < o Lr(a) + 2= 2r(p)
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